Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Neuromolecular Med ; 26(1): 16, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668900

Toll-like receptor (TLR) 7 plays an important role in recognizing virus-derived nucleic acids. TLR7 signaling in astrocytes and microglia is critical for activating immune responses against neurotrophic viruses. Neurons express TLR7, similar to glial cells; however, the role of neuronal TLR7 has not yet been fully elucidated. This study sought to determine whether resiquimod, the TLR7/8 agonist, induces the expression of inflammatory chemokines in SH-SY5Y human neuroblastoma cells. Immunofluorescence microscopy revealed that TLR7 was constitutively expressed in SH-SY5Y cells. Stimulation with resiquimod induced C-C motif chemokine ligand 2 (CCL2) expression, accompanied by the activation of nuclear factor-kappa B (NF-κB) in SH-SY5Y cells. Resiquimod increased mRNA levels of C-X-C motif chemokine ligand 8 (CXCL8) and CXCL10, while the increase was slight at the protein level. Knockdown of NF-κB p65 eliminated resiquimod-induced CCL2 production. This study provides novel evidence that resiquimod has promising therapeutic potential against central nervous system viral infections through its immunostimulatory effects on neurons.


Chemokine CCL2 , Chemokine CXCL10 , Imidazoles , Interleukin-8 , Toll-Like Receptor 7 , Transcription Factor RelA , Humans , Cell Line, Tumor , Chemokine CCL2/genetics , Chemokine CCL2/biosynthesis , Chemokine CXCL10/genetics , Chemokine CXCL10/biosynthesis , Imidazoles/pharmacology , Interleukin-8/genetics , Interleukin-8/biosynthesis , Neuroblastoma , Neurons/drug effects , Neurons/metabolism , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
2.
Mol Biol Rep ; 51(1): 417, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38483660

BACKGROUND: Bronchial epithelial cells are at the front line of viral infections. Toll-like receptor 3 (TLR3) cascade causes the expression of interferon (IFN)-ß and IFN-stimulated genes (ISGs), which in turn induce an antiviral response. Members of the transmembrane protein (TMEM) family are expressed in various cell types. Although the prognostic value of TMEM2 in various cancers has been reported, its association with infectious diseases remains unknown. In this study, we investigated the effects of TMEM2 on antiviral immunity in BEAS-2B bronchial epithelial cells. METHODS AND RESULTS: TMEM2 protein was found in the cytoplasm of normal human bronchial epithelial cells and differed between organs using immunohistochemistry. Cultured BEAS-2B cells were transfected with TMEM2 siRNA, followed by administration of TLR3 ligand polyinosinic-polycytidylic acid (poly IC) or recombinant human (r(h)) IFN-ß. The expression of TMEM2, IFN-ß, ISG56, C-X-C motif chemokine ligand 10 (CXCL10) and hyaluronan were evaluated appropriately by western blotting, quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. TMEM2 expression was not altered by poly IC stimulation. Knockdown of TMEM2 increased poly IC-induced expression of IFN-ß, CXCL10, and ISG56, while IFN-ß-induced expression of ISG56 and CXCL10 were not changed by TMEM2 knockdown. The hyaluronan concentration in the medium was decreased by either TMEM2 knockdown or poly IC, but additive or synergistic effects were not observed. CONCLUSIONS: TMEM2 knockdown enhanced TLR3-mediated IFN-ß, CXCL10, and ISG56 expression in BEAS-2B cells. This implies that TMEM2 suppresses antiviral immune responses and prevents tissue injury in bronchial epithelial cells.


Hyaluronic Acid , Toll-Like Receptor 3 , Humans , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Ligands , Poly I-C/pharmacology , Epithelial Cells/metabolism , Cells, Cultured , Chemokine CXCL10/genetics
3.
Mol Biol Rep ; 51(1): 131, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38236450

BACKGROUND: Innate immunity is known to be implicated in the etiology of synovitis in rheumatoid arthritis (RA). However, details of the molecular mechanisms have not been fully clarified. DExD/H-box helicase 60 (DDX60), a putative RNA helicase, is of consequence in anti-viral innate immune reactions followed by inflammation. Although DDX60 is involved in the pathogenesis of autoimmune diseases such as systemic lupus nephritis, the role of DDX60 in RA has not been elucidated. The objective of this study was to examine the expression and the role of DDX60 in RA synovial inflammation. METHODS AND RESULTS: DDX60 protein expression was investigated by immunohistochemistry in synovial tissues resected from 4 RA and 4 osteoarthritis (OA) patients. We found that synovial DDX60 expression was more intense in RA than in OA. Treatment of human rheumatoid fibroblast-like synoviocytes in culture with polyinosinic-polycytidylic acid, a Toll-like receptor 3 (TLR3) ligand, increased DDX60 protein and mRNA expression. A knockdown experiment of DDX60 using RNA interference revealed a decrease in the expression of poly IC-induced C-X-C motif chemokine ligand 10 (CXCL10) which induces lymphocyte chemotaxis. CONCLUSIONS: The synovial DDX60 was more expressed in RA patients than in OA. In human RFLS, DDX60 stimulated by TLR3 signaling affected CXCL10 expression. DDX60 may contribute to synovial inflammation in RA.


Arthritis, Rheumatoid , DEAD-box RNA Helicases , Lupus Nephritis , Osteoarthritis , Humans , Arthritis, Rheumatoid/genetics , Inflammation , Ligands , Osteoarthritis/genetics , Toll-Like Receptor 3/genetics , DEAD-box RNA Helicases/genetics
...